SERIAL RINGS AND SUBDIRECT PRODUCTS

Joel K. HAACK

Department of Mathematics, Oklahoma State University, Stillwater, OK 74078, USA

Communicated by H. Bass Received 30 September 1982

A basic Artinian serial ring can be realized as the subdirect product of factor rings of (S, M)upper triangular matrix rings with S a local Artinian ring and M the maximal ideal of S. As an application the serial subdirect product of (S, M)-rings is shown to have self-duality.

AMS(MOS) Subject Classification (1980): 16A48, 16A49. Keywords and phrases: Serial rings, Subdirect products, Morita duality.

A ring R is said to be serial if R, both as a left and as a right module over itself, is a direct sum of modules that have linearly ordered submodule lattices. The model for Artinian serial rings is the ring of upper triangular matrices over a division ring. The structure of serial rings has been analyzed by Nakayama [17], Goldie [6], Kupisch [10], Murase [14,15,16], Michler [11], Eisenbud and Griffith [3,4], Fuller [5], Warfield [18], and Ivanov [9]. Michler and Warfield employ (S, M)-upper triangular matrix rings to describe the structure of Noetherian non-Artinian serial rings, where an (S, M)-upper triangular matrix ring is a matrix ring over a local serial ring S with the entries below the main diagonal restricted to the unique maximal ideal M of S, thus generalizing the class of upper triangular matrix rings over division rings. Here we show that (S, M)-upper triangular matrix rings underlie the structure of all Artinian serial rings in that every Artinian serial ring is Morita equivalent to a finite subdirect product of factor rings of (S, M)-upper triangular matrix rings. We then use this characterization to show that members of a broad class of rings, namely those that are factor rings of serial finite subdirect products of (S, M)-upper triangular matrix rings, are self-dual; that is, they admit a functorial duality between their categories of left and right finitely generated modules.

First, let us fix notation and recall some facts about the structure of Artinian serial rings. For a module M, let c(M) denote the composition length of M and soc(M) the socle of M. The right annihilator of X in Y is given by

 $r_Y(X) = \{ y \in Y \mid xy = 0 \text{ for all } x \in X \}.$

Let R be an indecomposable Artinian serial ring with (Jacobson) radical J = J(R). Let

$$\{e_1 = e_{11}, \dots, e_{1m_1}, \dots, e_n = e_{n1}, \dots, e_{nm_n}\}$$

be a complete set of primitive orthogonal idempy ents of R, indexed so that $Re_{ij} \cong Re_{kl}$ iff i = k and so that Re_1, \ldots, Re_n forms a Kupisch series for R; that is, Re_i is a projective cover of Je_{i+1} for $1 \le i \le n-1$ and either $Je_1 = 0$ or Re_n is a projective cover of Je_1 [10].

Let [k] denote the least strictly positive residue of k modulo n. Knowledge of the Kupisch series of a serial ring allows one to identify the composition factors of each Re_i : If $J^k e_i \neq 0$, then

$$J^{k}e_{j}/J^{k+1}e_{j} \cong Re_{[j-k]}/Je_{[j-k]}$$
 [5].

The sequence $c(Re_1), c(Re_2), ..., c(Re_n)$ of composition lengths of the Re_j is called an *admissible sequence* of R; it is unique up to cyclic permutation, so that we may assume Re_1 is of minimal length among the Re_j . An admissible sequence satisfies the inequality

$$c(Re_{j+1}) \le c(Re_j) + 1$$
 $(j = 1, ..., n).$

A member Re_k of the Kupisch series is called a *chain end* if $c(Re_k) \ge c(Re_{[k+1]})$ [16]. A consequence of our assumption that Re_1 is of minimal length is that Re_n is a chain end.

Of course, any ring is a subdirect product of subdirectly irreducible factor rings, and a ring is subdirectly irreducible iff it has a unique minimal non-zero ideal. Let $e'_j = e_j + e_{j2} + \dots + e_{jn}$. Murase [15, Theorem 11] has characterized the ideals of an Artinian serial ring as being of the form $\sum J^{b_i}e'_j$, where the b_j satisfy $b_{\lfloor j+1 \rfloor} \le b_j + 1$. It follows that the subdirectly irreducible Artinian serial rings are those with exactly one chain end. The conditions of having exactly one chain end, having homogeneous socle, and having a strictly increasing admissible sequence are easily seen to be equivalent for a serial ring.

1. Proposition. The minimal non-zero ideals of an Artinian serial ring R are precisely those ideals of the form $J^{b_k}e'_k$, where Re_k is a chain end of R and $b_k = c(Re_k) - 1$. Hence an Artinian serial ring R is subdirectly irreducible iff R has a strictly increasing admissible sequence.

Proof. Let $c_i = c(Re_i)$. Re_k is a chain end of R iff $c_{[k+1]} \le c_k$; hence

$$\sum_{i\neq k} J^{c_i} e'_i + J^{c_k-1} e'_k = J^{b_k} e'_k$$

is an ideal that is clearly minimal. Any non-zero ideal I of R must contain $J^{e_i-1}e'_i$ for some i. If Re_i is a chain end, then I minimal implies that $I = J^{b_i}e'_i$. If Re_i is not a chain end, let Re_k be the first chain end in the Kupisch series occuring after Re_i ; then also $J^{e_i-1}e'_j$ is contained in I for $i \le j \le k$. In particular, the ideal $J^{b_k}e'_k \subseteq I$ so that in this case, I is not minimal. **2.** Corollary. If R is an Artinian serial ring, then R is a subdirect product of serial rings having strictly increasing admissible sequences.

More specifically, let Re_k be a chain end of an indecomposable Artinian serial ring R. Let $c_k = c(Re_k)$ and let

$$I_{k} = J_{-}^{c_{k}-1} e'_{[k-1]} + \dots + J^{c_{k}-n+1} e'_{[k-n+1]}$$
$$= \sum_{i=1}^{n} J^{c_{k}-i+1} e'_{[k-i+1]}.$$

Then I_k is an ideal of R and R/I_k is a serial ring with a unique chair, end $(R/I_k)(e_k + I_k)$. Moreover,

 $0 = \bigcap \{I_k \mid Re_k \text{ is a chain end of } R\}.$

To see this, let $0 \neq r \in R$. Choose *i* with $re'_i \neq 0$. Let k = i if Re_k is chain end; otherwise define k by letting Re_k be the first chain end appearing after Re_i in the Kupisch series of R. Then the terms from c_i to c_k in the corresponding admissible sequence must be $c_i, c_i + 1, c_i + 2, ..., c_k = c_i + (k - i)$. Hence $c_i = c_k - (k - i)$, so that

$$I_k \cap Re'_i = J^{c_k - (k - i)}e'_i = J^{c_i}e'_i = 0.$$

Hence neither re'_i nor r is in I_k and the claim is established. As a consequence, we have

3. Proposition. Let R be an indecomposable Artinian serial ring. For each chain end Re_k , let I_k be defined as above. Then R is a subdirect product of the subdirectly irreducible serial rings R/I_k .

The basic ring R_0 of the serial ring R is $R_0 = (e_1 + \dots + e_n)R(e_1 + \dots + e_n)$; R is Morita equivalent to R_0 and if $R_0 = R$, then R is said to be a basic ring [1, Section 27]. The following proposition, communicated by Warfield in a private correspondence, has a proof similar to that of [18, Theorem 5.14].

4. Proposition [Warfield]. Let R be a basic indecomposable Artinian serial ring with homogeneous socle and Kupisch series $Re_1, ..., Re_n$. Let $S = e_n Re_n$, $M = e_n Je_n$, and T the $(n \times n)$ -(S, M)-upper triangular matrix ring. Then T is serial and R is isomorphic to a factor ring of T. Moreover, R is isomorphic to T iff n divides $c(Re_n)$.

Proof. Let X be the direct sum of n copies of Re_n . For $1 \le i \le n-1$,

$$J^{n-i}e_n/J^{n-i+1}e_n \cong Re_i/Je_i.$$

Since the admissible sequence of R is strictly increasing, we see that

$$c(Re_i) = c(Re_n) - (n-i) = c(J^{n-i}e_n).$$

Consequently, $J^{n-i}e_n \cong Re_i$. Thus the submodule

$$P = J^{n-1}e_n \oplus J^{n-2}e_n \oplus \cdots \oplus Re_n$$

of X is isomorphic to $_{R}R$. Consequently, $R \cong \text{End}(_{R}P)$.

Let $T = \{f \in \text{End}(_RX) \mid f(P) \subseteq P\}$. Since X is injective (because the chain end Re_n is [5, Theorem 2.5]), any endomorphism of P extends to one of X, so $\text{End}(_RF)$ is a factor ring of T. Let $S = e_n Re_n$, $M = e_n Je_n = J(S)$ and identify $\text{End}(_RX)$ with the $(n \leq n)$ -matrix ring $M_n(S)$ over S. Let U be the (M, S)-upper triangular subring of $M_n(S)$. We must show that, under this identification, the (i, j)-entry f_{ij} of $f \in T$ is contained in M if i > j. But $f_{ij} : J^{n-i}e_n \to J^{n-j}e_n$ must have non-zero kernel since $c(...^{n-i}e_n) = c(Re_i) > c(Re_j) = c(J^{n-j}e_n)$, so also $f_{ij} : Re_n \to Re_n$ has non-zero kernel and must therefore be in M. Finally, let f be in U and let f_{ij} be the (i, j)-entry. If $i \le j$, then

$$J^{n-i}e_nf_{ij} \subseteq J^{n-i}e_nRe_n = J^{n-i}e_n \subseteq J^{n-j}e_n;$$

if j > j, then $f_{ij} \in M = e_n J e_n = e_n J^n e_n$, and

$$J^{n-i}e_nf_{ij} \subseteq J^{n-i}e_nJ^ne_n = J^{n-(i-n)}e_n \subseteq J^{n-j}e_n$$

Hence $f \in T$ and thus $T \cong U$. For the last statement, notice that the last column of T has composition length nc(S). For the converse, suppose $c(Re_n) = mn$. By Proposition 1, $T \cong R$ if any homomorphism $f: J^{n-1}e_n \to Re_n$ has a unique extension to $g: Re_n \to Re_n$, since the unique minimal ideal of T is non-zero only in the (1, n)-position of $M_n(S)$. Now the kernel of a map h from Re_n to Re_n must be one of the supmodules $Re_n, J^n e_n, J^{2n}e_n, \dots, J^{mn}e_n = 0$ since $Re_n/\ker h = 0$ or soc $(Re_n/\ker h) \cong$ so $(Re_n) \cong Re_1/Je_1$. Hence if g and \bar{g} are two extensions of a map $f: J^{n-1}e_n \to Re_n$, $J^n = Re_n$, $I^n = Re_n$, $I^n = Re_n$.

5. Theorem. If R is an Artinian serial ring, then the basic ring of R is a subdirect product of factor rings of (S, M)-upper triangular matrix rings where each S is a local Artinian serial ring and M = J(S).

Proof. Corollary 2 and Proposition 4.

As an application of this characterization of serial rings, we shall show that if the refresentation in Proposition 3 of an Artinian serial ring R is as a subdirect product of (S, M)-upper triangular matrix rings (rather than merely as factors of such rings), then R is self-dual. Results of Morita [12] and Azumaya [2] show that an Artinian ring R is self-dual in that there is a functorial duality between the categories of firstely generated left and right R-modules if $R \cong \text{End}(_R E)$, where E is a left injective cogenerator. We shall use the theorems and techniques of [7] and [8].

It is now sufficient to restrict our attention to a basic indecomposable Artinian sectal ring R. The indecomposable injective R-modules are factors of the chain ends of R [5, Theorem 2.5]; we say that the simple R-module Re_i/Je_i belongs to the

chain end Re_k (or simply that *i* be ongs to k) if the injective envelope E_i of Re_i/Je_i is a factor module of Re_k . We shall need the following calculations.

6. Lemma. Let R be an (S, M)-up or triangular matrix ring with Kupisch series Re_1, \ldots, Re_n and indecomposable .njective modules $E_i = E(Re_i/Je_i)$. For each $i = 1, \ldots, n$,

$$c(E_i) = c(Re_n) - i + 1,$$

so that

$$c(Re_i) + c(E_i) = 2c(Re_n) - n + 1.$$

Proof. Let $c({}_{S}S) = m$. Then $c({}_{R}Re_{n}) = nc({}_{S}S) = nm$. [5, Theorem 2.5] shows that $E_{i} \cong Re_{n}/J^{b_{i}}e_{n}$, where $b_{i} = c(e_{i}R_{R})$. But

$$c(e_i R) = (i-1)c(_S M) + (n-i+1)c(_S S)$$

= (i-1)(m-1) + (n-i+1)m
= nm-i+1 = c(Re_n)-i+1.

Similarly,

$$c(Re_i) = ic(sS) + (n-i)c(sM) = c(Re_n) - n + i.$$

The lemma follows.

The *trace* of a module M in another module N is the submodule

$$\operatorname{tr}_N(M) = \sum \{ \operatorname{im} f \mid f \colon M \to N \} \quad \text{of } N.$$

7. Lemma. Let R be a basic indecomposable Artinian ring with Kupisch series Re_1, \ldots, Re_n . Let $c_i = c(Re_i)$. For each chain end Re_k , let

$$I_{k} = J^{c_{k}-1}e_{[k-1]} + \dots + J^{c_{k}-n+1}e_{[k-n+1]}.$$

Assume that $J^n \neq 0$ and that R/I_k is an (S, M)-upper triangular matrix ring for each chain end Re_k . Let Re_k and Re_l be chain ends of R and let i belong to k. Then

- (a) Every chain end of R has the same composition length.
- (b) $\operatorname{tr}_{Re_i}(Re_i) \subseteq \operatorname{tr}_{Re_i}(Re_i)$.
- (c) If $\psi : Re_i \rightarrow Re_k$ is an R-homomorphism with $\psi(tr_{Re_i}(Re_i)) = 0$, then $\psi = 0$.

Proof. (a) If $J^n \neq 0$, then for some e_i , $J^n e_i \neq 0$; so also for some chain end Re_k , $J^n e_k \neq 0$ and $c_k > n$. Hence $c_k - n + 1 > 1$, so that each $(R/I_k)(e_i + I_k)$ is non-zero and $\{e_1 + I_k, \dots, e_n + I_k\}$ is a basic set of primitive orthogonal idempotents of R/I_k . Thus by Lemma 6, $c(_RRe_k) = c(_{(R/I_k)}Re_k/Ie_k)$ is a multiple of *n* and is at least 2*n*. The condition $c_{[i+1]} \leq c_i + 1$ implies that the largest possible difference among the c_i is n-1; hence every chain end Re_i has length greater than *n*, so satisfies $J^n e_i \neq 0$, and must have length the same multiple of *n*.

b) Now let Re_k and Re_l be chain ends of length mn. The composition factors of Re_k are

$$Re_{k}/Je_{k}, Je_{k}/J^{2}e_{k} \cong Re_{[k-1]}/Je_{[k-1]}, ...,$$

$$J^{mn-2}e_{k}/J^{mn-1}e_{k} \equiv Re_{[k+2]}/Je_{[k+2]},$$

$$J^{mn-1}e_{k} \cong Re_{[k+1]}/Je_{[k+1]}.$$

Similarly, the last composition factors of Re_l are

...,
$$J^{mn-2}e_l/J^{mn-1}e_l \cong Re_{[l+2]}/Je_{[l+2]},$$

 $J^{m_{ll-1}}e_l \cong Re_{[l+1]}/Je_{[l+1]}.$

Since the injective envelope of Re_j/Je_j is the maximal essential extension of Re_i/Je_j , we are guaranteed that the simples corresponding to k, ..., [l+2], [l+1] do not belong to Re_k . Thus if Re_i/Je_i does belong to Re_k , either $Re_i = Re_l$ or Re_l/Je_l occurs before Re_i/Je_i as a composition factor of Re_k . Hence $tr_{Re_k}(Re_i) \subseteq tr_{Re_k}(Re_l)$.

c) Referring to the composition factors of Re_k and Re_l , again either $Re_i = Re_l$ or Re_i/Je_i occurs after Re_l/Je_l as a composition factor of Re_k . Hence if $\psi : Re_l \rightarrow Re_l$ is non-zero, then $\psi(tr_{Re_i}(Re_i)) \neq 0$.

ring R has a weakly symmetric self-duality if there is an isomorphism $\phi: R \to \text{Engl}(_RE)$ such that $E\phi(e)$ is the injective envelope of Re/Ie for each idempotent e in a basic set for R [7, Poposition 3.1]. Homomorphisms of left R modules are written on the right in the following proof.

8. Theorem. Let R be a basic indecomposable Artinian serial ring with Kupisch series Re_1, \ldots, Re_n . For each chain end Re_k , let

$$I_{k} = J^{c_{k}-1}e_{[k-1]} + \dots + J^{c_{k}-n+1}e_{[k-n+1]}.$$

If \mathbb{R}/I_k is an (S, M)-upper triangular matrix ring for each chain end Re_k , then R has a weakly symmetric self-duality.

Proof. By [7, Corollary 4.5], if $J^n = 0$, then R has a weakly symmetric self-duality. As ume $J^n \neq 0$. Let E_i be the injective envelope of Re_i/Je_i and let $E = \bigoplus E_i$ be the minimal injective cogenerator. Let $S = \text{End}(_R E)$. Let $E_i^k = r_{E_i}(I_k)$ and let $E^k = r_I I_k$). Then E_i^k is the injective envelope of $(R/I_k)(e_i + I_k)/(J/I_k)(e_i + I_k)$ and E^k is a minimal injective cogenerator over R/I_k for Re_k a chain end of R. Also, let $S^k = \text{End}(_{R I_k} E^k)$; $S^k \cong S/r_S(E^k)$ [13]. By [7, Theorem 2.4] there is a ring isomorphism $\phi_k : R/I_k \rightarrow S^k$ yielding a weakly symmetric self-duality. Moreover, S is a surface product of the rings S^k where the coordinate map from S to S^k is the restriction of $s \in S$ to E^k , for $r_s(r_E(\cdot))$ provides an isomorphism between the lattices of deals of R and S [1, Section 24]. Thus, the product ϕ of the ϕ_k provides an isomorphism from [] R/I_k to [] S^k . Regard R as the subdirect product of the R/I_k ; if the maps ϕ_k can be chosen so that $\phi(R) = S$, then it will follow that R is self-dual. Hence we must use some care in defining the ϕ_k from the proof of [7, Theorem 2.4]. Our hypothesis on R guarantees that only case i of that proof need be considered.

To this end, fix $i \in \{1, ..., n\}$. Order the chain ends $Re_{k_0}, ..., Re_{k_q}$ so that $c(Re_i/I_{k_p}e_i) < c(Re_i/I_{k_{p+1}}e_i)$ for p = 0, ..., q-1. Then *i* belongs to k_0 , for by Lemma 7, a longer $E_i^{k_p}$ corresponds to a shorter $Re_i/I_{k_p}e_i$. Choose a monomorphism $\alpha_i^{k_0}: Re_i/I_{k_0}e_i \rightarrow Re_{k_0}$ and an epimorphism $\beta_i^{k_0}: Re_{k_0} \rightarrow E_i^{k_0}$. Since *i* belongs to k_0 , $E_i^{k_0} = E_i$. Assume that $\alpha_i^{k_{p-1}}$ and $\beta_i^{k_{p-1}}$ have been defined for some $p \ge 1$. Since $Re_i/I_{k_{p-1}}e_i$ is shorter than $Re_i/I_{k_p}e_i, E_i^{k_p}$ is a submodule of $E_i^{k_{p-1}}$ (Lemma 7); denote this inclusion map by $\iota_i^{k_p}$. Let $\eta_i^{k_p}$ be the natural epimorphism $\eta_i^{k_p}: Re_i/I_{k_p}e_i \rightarrow Re_{k_{p-1}}$ has a linearly ordered submodule lattice, there exists $\theta_i^{k_p}: Re_{k_p} \rightarrow Re_{k_p-1}$ with im $\theta_i^{k_p} = \operatorname{tr}_{Re_{k_p-1}}(Re_{k_p})$. Because

$$\operatorname{im} \eta_i^{k_p} \alpha_i^{k_{p-1}} \subseteq \operatorname{tr}_{Re_{k_p-1}}(Re_i) \subseteq \operatorname{tr}_{Re_{k_p-1}}(Re_{k_p}) = \operatorname{im} \theta_i^{k_p}$$

(Lemma 7 applied to $R/(I_{k_p} \cap I_{k_{p+1}} \cap \dots \cap I_{k_q})$) and since $R/I_{k_p}(Re_i/I_{k_p}e_i)$ is projective, there exists a map $\alpha_i^{k_p}: Re_i/I_{k_p}e_i \to Re_{k_p}$ such that

$$\alpha_i^{k_p}\theta_i^{k_p}=\eta_i^{k_p}\alpha_i^{k_{p-1}}.$$

In fact $\alpha_i^{k_p}$ is monic, for $\operatorname{soc}(Re_i/I_{k_p}e_i) \cong \operatorname{soc}(Re_{k_p})$, so that $c(\ker \alpha_i^{k_p})$ is a multiple of *n*. But

$$\ker \alpha_i^{k_p} \subseteq \ker \alpha_i^{k_p} \theta_i^{k_p} = \ker \eta_i^{k_p} \alpha_i^{k_{p-1}} = \ker \eta_i^{k_p} = I_{k_{p-1}} e_i / I_{k_p} e_i,$$

which has composition length less than *n*. Finally $\operatorname{im} \theta_i^{k_p} \beta_i^{k_{p-1}} \subseteq \operatorname{im} t_i^{k_p}$ since $\operatorname{im} t_i^{k_p} = E_i^{k_p}$ is the maximal submodule of $E_i^{k_{p-1}}$ with $E_i^{k_p}/JE_i^{k_p} \cong Re_{k_p}/Je_{k_p}$; and $\operatorname{im} t_i^{k_p} \subseteq \operatorname{im} \theta_i^{k_p} \beta_i^{k_{p-1}}$ since $\beta_i^{k_p}$ is epic, Re_{k_p} is projective, and $\operatorname{im} \theta_i^{k_p} = \operatorname{tr}_{Re_{k_p-1}}(Re_{k_p})$. Thus there exists $\beta_i^{k_p}$ with $\beta_i^{k_p} I_i^{k_p} = \theta_i^{k_p} \beta_i^{k_{p-1}}$; $\beta_i^{k_p}$ necessarily epic. Now for chain ends $Re_i = Re_{k_p}$ and $Re_m = Re_{k_i}$ with p < t, define $\theta_i^{ml} = 1 \cdot \theta_i^{k_t} \theta_i^{k_{t-1}} \cdots \theta_i^{k_{p+1}} \colon Re_m \to Re_l$, define η_i^{ml} to be the natural epimorphism $\eta_i^{ml} \colon Re_i/I_m e_i \to Re_i/I_i e_i$, and define t_i^{ml} to be the natural inclusion $t_i^{ml} \colon E_i^m \to E_i^l$. Then for chain ends $Re_i = Re_{k_p}$ and $Re_m = Re_{k_i}$ with p < t, the following diagram is commutative:

$$\begin{array}{c|c} Re_i/I_le_i & \xrightarrow{\alpha_i^l} & Re_l & \xrightarrow{\beta_i^l} & E_i^l \\ \eta_i^{ml} & & & & & & & \\ n_i^{ml} & & & & & & & \\ Re_i/I_me_i & \xrightarrow{\alpha_i^m} & Re_m & \xrightarrow{\beta_i^m} & E_i^m \end{array}$$

The commutativity of these diagrams will produce the desired result that $\phi(R) = S$.

For each chain end Re_l , define $\phi_l : R/I_l \to S^l$ as in [7, Theorem 2.4] using the above choices for α_i^l and β_i^l ; that is, given $r \in R$, define $\gamma^l, \delta^l, \varepsilon^l$, and $s_{ij}^l = \phi_l(e_i re_j + I_l)$ as the unique maps that make the following diagram commutative:

Then extend the definition of ϕ_i linearly. It remains to be shown that for any $r \in R$ and for any two chain ends Re_i and Re_m , $\phi_i(r)$ and $\phi_m(r)$ are restrictions of one endomorphism $s \in S$. This will be accomplished by showing that for any $r \in R$ any pair of idempotents e_i and e_i in a basic set for R, and any chain end Re_i , $\phi_i(e_i re_i)$ is the restriction of $\phi_k(e_i r e_j)$ to E_i^l , where *i* belongs to *k*. Denote by ρ_{ij}^k (respectively, ρ_{ij}^l) right multiplication by $e_i r e_j + I_k(e_i r e_j + I_l)$. Con-

sider the following diagram:

(*Tase* (i). If $c(Re_i/I_ke_i) \ge c(Re_i/I_le_i)$, then we have defined maps such that the following diagram is commutative:

Hence $\alpha_i^l \gamma^l = \alpha_i^l \theta_i^{lk} \gamma^{kl} \theta_j^{kl}$, so that the map $\psi = \gamma^l - \theta_i^{lk} \theta^k \theta_j^{kl}$ restricted to $\operatorname{im} \alpha_i^l = \operatorname{tr}_{R_i}(Re_i)$ is the 0-map. Because $I_i e_i = 0$ and *i* belongs to *l* in R/I_i , we may apply Lemma 7 to see that $\psi = 0$; that is, $\gamma^l = \theta_i^{lk} \gamma^k \theta_j^{kl}$. Therefore

$$\beta_i's_{ij}' = \gamma'\beta_j' = \theta_i^{k}\gamma^k\theta_j^{kl}\beta_j^{l} = \beta_i'\iota_i^{k}s_{ij}^{k}\iota_j^{lk}.$$

Cancel the epimorphism β_i^l to obtain $s_{ij}^l = \iota_i^{lk} s_{ij}^k \iota_j^{kl}$. *Case* (ii) is handled similarly with the conclusion that $\iota_i^{lk} s_{ij}^k = s_{ij}^l \iota_j^{lk}$ if $c(Re_j/I_k e_j) < c(Re_j/I_l e_j)$. Hence every s_{ij}^l is a restriction of s_{ij}^k when *i* belongs to *k*. Thus $\phi(R) = S$ and R has a weakly symmetric self-duality.

A consequence of Theorem 8 and [7, Proposition 4.1] is that every (serial) ring that is a factor ring of a serial ring satisfying the hypotheses of Theorem 5 also has self-duality. Unfortunately, not all serial rings are such factors. An example is given in [7, Example 3.4]. This ring R has admissible sequence 3, 3 with $e_1Re_1 \cong \mathbb{Z}_4$ and $e_2 R_2 e_2 \cong \Lambda = \mathbb{Z}_2[x]/(x^2)$ and is a subdirect product of factors of the (2×2) - $(\mathbb{Z}_4, 2\mathbb{Z}_4)$ -upper triangular matrix ring and the (2×2) - $(\Lambda, x\Lambda)$ -upper triangular matrix ring. But R is not a factor of a serial subdirect product T of (S, M)-rings, for such a ring T must have admissible sequence 2m - 1, 2m or 2m, 2m for some m. It would then follow from [9, Theorem 11] that $\Lambda \cong \mathbb{Z}_4$, a contradiction.

References

- [1] F.W. Anderson and K.R. Fuller, Rings and Categories of Modules (Springer-Verlag, Berlin, 1974).
- [2] G. Azumaya, A duality theory for injective modules, Amer. J. Math. 81 (1959) 249-278.
- [3] D. Eisenbud and P. Griffith, Serial rings, J. Algebra 17 (1971) 389-400.
- [4] D. Eisenbud and P. Griffith, The structure of serial rings, Pacific J. Math. 36 (1971) 109-121.
- [5] K.R. Fuller, Generalized uniserial rings and their Kupisch series, Math. Z. 106 (1968) 248-260.
- [6] A.W. Goldie, Torsion-free modules and rings, J. Algebra 1 (1964) 268-287.
- [7] J.K. Haack, Self-duality and serial rings, J. Algebra 59 (1979) 345-363.
- [8] J.K. Haack, Finite subdirect products of rings and Morita duality, Comm. Algebra, to appear.
- [9] G. Ivanov, Left generalized uniserial rings, J. Algebra 31 (1974) 166-181.
- [10] H. Kupisch, Beitrage zur Theorie nichthalbeinfacher Ringe mit Minimalbedingung, J. Reine Angew. Math. 201 (1959) 100-112.
- [11] G.O. Michler, Structure of semi-perfect hereditary Noetherian rings, J. Algebra 13 (1969) 327-344.
- [12] K. Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 6 (1958) 83-142.
- [13] B.J. Müller, On Morita duality, Canad. J. Math. 6 (1969) 1338-1347.
- [14] I. Murase, On the structure of generalized uniserial rings, I, Sci. Papers College Gen. Ed. Univ. Tokyo 13 (1963) 1-22.
- [15] I. Murase, On the structure of generalized uniserial rings, II, Sci. Papers College Gen. Ed. Univ. Tokyo 13 (1963) 131-158.
- [16] I. Murase, On the structure of generalized uniserial rings, III, Sci. Papers College Gen. Ed. Univ. Tokyo 14 (1964) 14-25.
- [17] T. Nakayama, Note on uniserial and generalized uniserial rings, Proc. Imp. Acad. Japan 16 (1940) 285-289.
- [18] R.B. Warfield, Jr., Serial rings and finitely presented modules, J. Algebra 37 (1975) 187-222.