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A basic Artinian serial ring can be realized as the subdirect product of factor rings of (S, M)-
upper triangular matrix rings with S a local Artinian ring and M the maximal ideal of S. As an
application the serial subdirect product of (S, M)-rings is shown to have self-duality.
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A ring R is said to be serial if R, both as a left and as a right module over itself,
is a direct sum of modules that have linearly ordered submodule lattices. The model
for Artinian serial rings is the ring of upper triangular matrices over a division ring.
The structure of serial rings has been analyzed by Nakayama [17], Goldie [6],
Kupisch [10], Murase [14,15,16], Michler {11], Eisenbud and Griffith [3,4], Fuller
[5], Warfield [18], and Ivanov [9]. Michler and Warfield employ (S, M)-upper tri-
angular matrix rings to describe the structure of Noetherian non-Artinian serial
rings, where an (S, M)-upper triangular matrix ring is a matrix ring over a local
serial ring S with the entries below the main diagonal restricted to the unique maxi-
mal ideal M of S, thus generalizing the class of upper triangular matrix rings over
division rings. Here we show that (S, M)-upper triangular matrix rings underlie the
structure of all Artinian serial rings in that every Artinian serial ring is Morita
equivalent to a finite subdirect product of factor rings of (S, M)-upper triangular
matrix rings. We then use this characterization to show that members of a broad
class of rings, namely those that are factor rings of serial finite subdirect products
of (S, M)-upper triangular matrix rings, are self-dual; that is, they admit a func-
torial duality between their categories of left and right finitely generated modules.

First, let us fix notation and recall some facts about the structure of Artinian
serial rings. For a module M, let c¢(M) denote the composition length of M and
soc(M) the socle of M. The right annihilator of X in Y is given by

ry(X)={yeY|xy=0 for all xe X}.
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Let R be an indecomposable Artinian serial ring with (Jacobson) radical J = J(R). Let

{e, = Oy s €l -r €y = enl""senm,,}

be a complete set of primitive orthogonal idemp- ‘ents of R, indexed so that
Re;;=Rey, iff i=k and so that Re,, ..., Re, forms a Kupisch series for R; that is,
Re; is a projective cover of Je;,, for 1<i<n—1 and either Je, =0 or Re, is a pro-
jective cover of Je, [10].

Let [k] denote the least strictly positive residue of & modulo n. Knowledge of the
Kupisch series of a serial ring allows one to identify the composition factors of each
Re,: If J*e,+0, then

J"’ej/.lk”ejEReUNk]/J?[j_“ [5].

The sequence c(Re,), c(Res), ..., c(Re,) of composition lengths of the Re; is called
an admissible sequence of R; it is unique up to cyclic permutation, so that we may
assume Re, is of minimal length among the Re;. An admissible sequence satisfies
the inequality

('(Re[j+”)$C(Rej)+l (j=1,...,n).

A member Re, of the Kupisch series is called a chain end if c(Rey)=c(Rey . )
[16]. A consequence of our assumption that Re, is of minimal length is that Re, is
a chain end.

Of course, any ring is a subdirect product of subdirectly irreducible factor rings,
and a ring is subdirectly irreducible iff it has a unique minimal non-zero ideal. Let
e,=e;+ej+--+e;,. Murase [15, Theorem 11] has characterized the ideals of an
Artinian serial ring as being of the form }:J"'e_}, wiere the b; satisiy b, <
£, + 1. 1t follows that the subdirectly irreducible Artinian serial rings ~re those with
exactly one chain end. The conditions of having exactly one cuain end, having
homogeneous socle, and having a strictly increasing admissible sequence are easily
seen to be equivalent for a serial ring.

1. Proposition. The minimal non-zero ideals of an Artinian serial ring R are
precisely those ideals of the form J%™e;, where Re, is a chain end of R and
by =c(Rey)— 1. Hence an Artinian serial ring R is subdirectiy irreducible iff R has
a strictly increasing admissible sequence.

Proof. Let ¢;=c(Re;). Re; is a chain end of R iff ¢, <¢;; hence

Y e+ el = Jhie,

[EXS
is an ideal that is clearly minimal. Any non-zero ideal 7 of R must contain J¢ 'e;
for some /. If Re; is a chain end, then 7 minimal implies that I =J%e]. If Re, is not
a chain end, let Rey be the first chain end in the Kupisch series occuring after Re;;
then also J¢ 'e; is contained in 7 for i<j<k. In particular, the ideal J%e; C 1 so
that in this case, / is rot minimal.
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2. Corollary. If R is an Artinian serial ring, then R is a subdirect product of serial
rings having strictly increasing admissible sequences.

More specifically, let Re, be a chain end of an indecomposable Artinian serial
ring R. Let ¢, =c(Re;) and let

Li=J% ey _y+ -+ " el 0y

n
— C—i+1
—‘ank €k —i+1)
i=

Then I, is an ideal of R and R/I, is a serial ring with a unique chair. end
(R/L) (e, + I,). Moreover,

0={I, | Re, is a chain end of R}.

To see this, iet 05tre R. Choose i with re;#0. Lat k=i if Re, is chain end; other-
wise define k by letting Re, be the first chain end appearing after Re; in the
Kupisch series of R. Then the terms from ¢; to ¢, in the corresponding admissible
sequence must be ¢;, ¢;+1, ¢;+2,...,c,=c;+ (k—i). Hence ¢;=c; — (k—1i), so that

IO\ Rej = J~&-D¢! = jagl = 0,

Hence neither re; nor r is in 7, and the claim is established. As a consequence, we
have

3. Proposition. Let R be an indecomposable Artinian serial ring. For each chain
end Re;, let I, be defined as above. Then R is a subdirect product of the sub-
directly irreducible serial rings R/I,.

The basic ring Ry of the serial ring R is Ry=(e;+--+e,)R(e;+---+e,); R is
Morita equivalent to R, and if R,=R, then R ;s said to be a basic ring [1, Section
27]. The following proposition, commmunicated b Warfield in a private correspon-
dence, has a proof similar to that of [18, Theorem 5.14].

4. Proposition [Warfield]. Let R be a basic indecomposable Artinian serial ring
with homogeneous socle and Kupisch series Re,,...,Re,. Let S =e,Re,, M =¢,Je,,
and T the (n x n)-(S, M)-upper triangular matrix ring. Then T is serial and R is iso-
morphic to a factor ring of T. Moreover, R is isomorphic to T iff n divides c(Re,).
Proof. Let X be the direct sum of »n copies of Re,. For 1<i<n-1,

J" e, /"t le, = Re,/Je;.

Since the admissible sequence of R is strictly increasing, we see that

c(Re)) = c(Re,) — (n—i) = c(J" 'e,).
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Consequently, /"~ 'e,=Re;. Thus the submodule
P=J""e,®J" %e,® @ Re,

of X is isomorphic to xR. Consequently, R=End(P).

Let T={feEnd(zX) ] J(P)c P}. Since X .. injective (because the chain end Re,
is [5, Theorem 2.5]), any endomorphism of P extends to one of X, so End(zF) is
a f;]CtOl ring of T. Let S=e¢,Re,, M =e¢,Je,=J(S) and identify End(z X) with the
(n ~< n)-matrix ring M,(S) over S. Let U be the (M, S)-upper triangular subring of
M,j(S ). We must show that, under this identification, the (i, j)-entry f; of feT is
comtained in M if i>j. But f;:J" 'e,— J" /e, must have non-zero kernel since
c(" 'e,)=c(Re;)>c(Rej)=c(J" 'e,), so also f;;: Re,— Re, has non-zero kernel
andl must therefore be in M. Finally, let f be in U and let f;, be the (i, j)-entry. If
i<jyj, then
!l e"f; C J" le Re — J" I” C J’l je

if ¢£>/, then f,eM=e,Je,=e,J"e,, and

J""'e,,f,--gJ""’e,,J"e,,:J""“""’e cJn je"

n =

Hdnce fe T and thus T=U. For the last statement, notice that the last column of
T thas composition length nc(S). For the converse, suppose c(Re,)=mn. By
Pr’é)position 1, T=R if any homomorphism f:J" e, = Re, has a unique extension
toge : Re, = Ke,, since the unique minimal ideal of 7 is non-zero only in the (1, n)-
pogition of M,(S). Now the kernel of a map 4 from Re, to Re, must be cne of the
suymodules Re,, J"e,, J*"e,,...,J™"e, = 0 since Re,/ker h =0 or soc(Re, /ker h) =
sof(Re,)= Re,/Je,. Hence if g and g are two extensions of a map f:J" 'e,— Re,,
J" 'e,C ker(g — g) and thus ker(g - &)= Re,.

S.¢Theorem. [f R is an Artinian serial ring, then the basic ring of R is a subdirect
preduct of factor rings of (S, M)-upper triangular matrix rings where each S is a
logal Artinian serial ring and M = J(S).

Proof. Corollary 2 and Proposition 4.

f\san application of this characterization of serial rings, we shall show that if the
reifresentation in Proposition 3 of an Artinian serial ring R is as a subdirect product
ot§ S, M)-upper triangular matrix rings (rather than merely as factors of such rings),
th-gn R is self-dual. Results of Morita [12] and Azumaya [2] show that an Artinian
ril'gg R is self-dual in that there is a functorial duality between the categories of
t'ilsg!.tely generated left and right R-modules if R =End(gE), where E is a left injec-
ti\?} cogenerator. We shall use the theorems and techniques of [7] and [8].

¢t is now sufficient to restrict our attention to a basic indecomposable Artinian
sefal ring R. The indecomposable injective R-modules are factors of the chain ends
ol¢R [5, Theorem 2.5]; we say that the simple R-module Re;/Je; belongs to the

—

VDT P A T M B,



Serial rings .nd subdirect products 161

chain end Re, (or simply that i be ngs to k) if the injective envelope E; of Re,/Je;
is a factor module of Re,. We sh. 'l need the following calculations.

6. Lemma. Let R be an (S,M)-up er triangular matrix ring with Kupisch series
Rey,...,Re, and indecomposable .njective modules E;= E(Re;/Je;). For each
i=1,...,n,

c(E;) =c(Re,)—i+1,
so that

c(Re;)+c(E;) = 2¢(Re,)) —n+1.

Proof. Let ¢(sS)=m. Then c(xRe,)=nc(sS)=nm. [5, Theorem 2.5] shows that
E;=Re,/J%e,, where b;=c(e; Rg). But
ce;R)=(-1)c(sM)+(n—i+1)c(sS)
=@@-1D(m-1)+(n—-i+1)ym
=nmm-—i+1=c(Re,)—i+]1.
Similarly,
c(Re;) =ic{sS)+{(n—i)c(sM) =c(Re,)—n+i.

The lemma follows.

The trace of a module M in another module N is the submodule

try(M) =Y {imf|f:M—N} of N.

7. Lemma. Let R be a basic indecomposable Artinian ring with Kupisch series
Rey,...,Re,. Let ¢c;=c(Re;). For each chain end Rey, let

Ik = .]ckale”-_”'f' e +J“k'n+le[k—n+|]'

Assume that J" #0 and that R/I, is an (S, M)-upper triangular matrix ring for each
chain end Re;. Let Re, and Re; be chain ends of R and let i belong to k. Then
(a) Every chain end of R has the same composition length.
(b) trg, (Re;)C trRe, (Re)).
(¢) If w:Re;— Rey is an R-homomorphism with w(trg, (Re;)) =0, then y=0.

Proof. (a) If J"#0, then for some ¢;, J"¢;#0; so also for some chain end Rey,
J"e,#0 and ¢, >n. Hence ¢, —n+1>1, so that each (R/I;)(e; + I;) is non-zero and
{e,+1,...,e,+1I;} is a basic set of primitive orthogonal idempotents of R/I;.
Thus by Lemma 6, c(zRey) = c(r/1,)Re;/Ie;) is a multiple of n and is at least 2.
The condition ¢j;, ;;<c; + 1 implies that the largest possible difference among the ¢;
is n—1; herce every chain end Re, has length greater than n, so satisfies J"e; #0,
and must have length the same multiple of n.
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t
g}b) Vow let Re, and Re,; be chain ends of length mn. The composition factors of

aré

X
~
Lo L

Rek/.lek,.lek/Jze,‘ = Re[k_ ”/Je[k_ 1o+
J”’"”Zek/J'""”ek = Re[k+2]/Je[k+2],

J'"""ek = Re[“,]/.le[“ -

mm-ze‘isﬁmcm

(8
-

Sn ilarly, the last composition factors of Re, are

_]'"" 2e, Jjmn- ‘91 Re[,+~,]/.]e[/+ 2
Jmi- 6’1 = Rel“_ ”/J€[[+ -
D
Sit

irgee the injective envelope of Re;/Je; is the maximal essential extension of
Rey/Je,, we are guaranteed that the simples corresponding to &, ..., [/+2],[/+1] do
no¥ belong 10 Re,. Thus if Re,;/Je; does belong to Re,, either Re; = Re; or Re;/Je,
oc‘;i;urs before Re;/Je; as a composition factor of Re,. Hence trg,, (Re;) C trg,, (Re).

%) Referring to the composition factors of Re; and Re;, again either Re; = Re;
or 3?9,/.15’, occurs after Re,/Je; as a composition factor of Re,. Hence if y : Re,—
Reg is non-zero, then (trg, (Re;)) #0.

% ring R has a weakly symmetric self-duality if there is an isomorphism ¢ : R —
Ergl(,E) such that E¢(e) is the injective envelope of Re/Je for each idempotent e
in & basic set for R [7, Poposition 3.1]. Homomorphisms of leii R-modules are
wryten on the right in the following proof.

8.%Theorem. Letr R be a bavic indecomposable Artinien serial ring witl: Kupisch

seites Rey, ..., Re,. For each chain end Re,, let
L.

i
I %?/I,\ is an (S, M)-upper triangular matrix ring for each chain end Re,, then R
has a weakly symmetric self-duality.

]/x‘ =Jw Ie[k_ |]+ ce g JOO "”e[k__,,H].

Prbof. By [7, Corollary 4.5], if J” =0, then R has a weakly symmetric self-duality.
A.gume J"#0. Let E, be the injective envelope of Re, /Je, and let £ =@®E; be the
migtimal mlemve cogenerator. Let S=End(gE). Let E =rg (I;) and let Ef=

r i[") Then E is the injective envelope of (R//;)(e; + I,,)/(J/I,.)(e +1;) and EXis
a funimal injective cogenerator over R/I, for Re, a chain end of R. Also, let
S*EEnd(, , E*); SY=S/rg(E*) [13]. By [7, Theorem 2.4] there is a ring isomor-
phtsm ¢, : R/I, — S* yielding a weakly symmetric self-duality. Moreover, S is a
suidirect product of the rings S¥ where the coordinate map from S to S* is the
resjriction of se S to E¥, for r(re( ) provides an isomorphism between th: latt.ces
ol ¢deals of R and S [1, Section 24]. Thus, the product ¢ of the ¢, provides an iso-
megrphism from [| R /I, to [[ S¥. Regard R as the subdirect product of the R/I; if
the maps @, can be chosen so that ¢(R) =S, then it will follow that R is self-dual.
Hegice we must use some care in defining the ¢, from the proof of [7, Theorem
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2.4]. Our hypothesis on R guarantees that only case / of that proof need be con-
sidered.

To this end, fix ie{l,...,n}. Order the chain ends Rey,, ..., Re; so that
c(Re;/ 1 e; )<C(RP /Iy, €:) for p=0,...,qg-1. Then i pelongs to k;, for by Lem-
ma 7, a longer E » COIT: asponds to a shorter Re,/IA e;. Choose a monomorphism

k" :Re,/I; e;— Re;, and an eplmorphrsm ,B : Rey, —'E . Since i belongs to &,
E"“—E Assume that a; k»-1 and ﬁ r-! have been defmed for some p=1. Since
Re;/Iy, e is shorter than Re;/I, e,, E/» k> is a submodule of E; ke (Lemma 7); denote
this mclusron map by 1 . Let t], be the natural epimorphism r], :Re; /Ik e
Re;/Iy | . Since Rey, has a linearly ordered submodule lattice, there exlsts
6% Re,(‘w - Re with im 6k p=trg,, (Rey). Because

im r]{"’a,k” ' Ctrg,, (Re;) Ctrg, (Rey)=im 9,-""

(Lemma 7 applied to R/(lk ﬂIA n---NI )) and since g/, (Re /1, e,) is projec-
tive, there exists a map a ": Re; /Ik e;~ Rey "such that *

k,nk k, Kk
ai”ei"=ﬂ,-"ai” I,

In fact a,-"f’ is monic, for s:oc(Rei/Ikpe,-)ssoc(Rekp), so that c(ker af") is a multiple
of n. But

k, Kpky _ KoKy v kn _
kera;” C kera;70;" =kern; ;" ' =kern;" =1 e/l e,

which has composition length less than n. Finally im 6, F,B N« imr"P since
1ml E"" is the maxlmal submodule of Ekﬂ ' with E‘f/JE"I’:ReA /JeA ; and
im y; b im 0""/? 7' since /} , 1s CplC, Rek is pro;ectlve, and im 0 P*trRe (ReA ).
Thus there exists ﬂ » with /} = Bkﬂ ', 2 k» necessarily epic. Now for chain ends
Re, = Rek and Re,=Re; w1th p<t defme 0'"'—1 9"'0"' L. 0""*‘ :Re,,— Re,
define n™ to be the natural epimorphism 5" ' Re;/I,.e;~ Re;/Ie;, and define 1"
to be the natural inclusion ™: E'"—fE' Then for chain ends Re;=Re; and
Re,, = Re, with p<{, the following diagram is commutative:

! {
a; Bi !
Re,‘/[[ei I —— Rel E,'
n:nl Bl_ml ! :nl
Re;/I,e; —— Re,, ——— E"

a:ﬂ ﬁ,m

Th: commutativity of these diagrams will produce the desired result that ¢(R) =S.

For each chain end Re,, define ¢,: R/I,—~ S' as in [7, Theorem 2.4] using the
above choices for a,- and ,B‘ ; that is, given r € R, define y o' ¢, and s =@ (ejre; + 1))
a; the unique maps that make the following diagram commutatrve
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) i
al ﬂ.f !
Re,/l,e,- * Re; > Ei
i ]
eire, +1 Y o' § sr‘lj

Re,/le; »'Re, v E/
A a} ﬂj’ 4

THen extend the definition of ¢, linearly. It remains to be shown that for any re R
artlj for any two chain ends Re; and Re,,, ¢;(r) and ¢,,(r) are restrictions of one
enflomorphism se S. This will be accomplished by showing that for any re R any
pajr of idempotents e; and ¢; in a basic set for R, and any chain end Re,, ¢,(e;re;)
is the restriction of ¢,(e;re;) to E,.’, where i/ belongs to k.

Denote by g,'} (respectively, gfj) right multirlication by e, re; + I;(e;re; + I;). Con-
sicier the following diagram:

! !
q; B;

!
Re,/lie, —— Re, E;
. -~ -+~
/ I i
Q’,/ y Slj
! i
a} ﬂl ]
Re,/l,e, — Re, E;
! Ik -
! 6, 1
+ A v K JV
i (..’[ ﬂ,‘ k
Re,/l,e, —-— Re, ———— E|
A A A
gg_, l Y S{j
- 4 v
k
Re;/I e, ‘*—;k—'—’ Re, 5 E;
; i

¢ase (i). If c(Re,/I,e))=c(Re;/I e;), then we have defined maps such that the
fol.owing diagram is commutative:

i !
@ B,
! - /
Re,/1e, Re, — E
B oo |

|
Re /l/\-(’ Re, 1
J J aj/\ K ﬂjk
He'ffnce afy’za,’ﬁ,-’ky“()j’"/, so that the map u/=)r’v0,-’k9k0f/ restricted to im afz
tre! (Re,) is the 0-map. Because /,¢,=0 and J belongs to / in R/I,, we may apply
l.c;nma 7 to see that w=0; that is, y'zB{"kaf‘. Therefore

I _ il _ plk kpokipl _ pl Ik k Ik
ﬂ,s,j— y B = 0;"y"6; ,Bj =Bt st
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Cancel the epimorphism S/ to obtain sfj=z,-"‘sfj ! ;".

Case (ii) is handled similarly with the conclusion that 1,-”‘s,f"j =s,{,~ z;" if c(Re; /I e;)<
c(Rej/I, ej). Hence every s,-’j is a restriction of s,-’j- when i belongs to k. Thus ¢(R)=S
and R has a weakly symmetric self-duality.

A consequence of Theorem 8 and [7, Proposition 4.1] is that every (serial) ring
that is a factor ring of a serial ring satisfying the hypotheses of Theorem 5 also has
self-duality. Unfortunately, not all serial rings are such factors. An example is given
in [7, Example 3.4]. This ring R has admissible sequence 3,3 with e, Re, =7, and
e,R,e;=A=7,[x]/(x?) and is a subdirect product of factors of the (2x2)-
(Z4,2Z,)-upper triangular matrix ring and the (2Xx2)-(A,xA)-upper triangular
matrix ring. But R is not a factor of a serial subdirect product T of (S, M)-rings,
for such a ring 7 must have admissible sequence 2m — i,2m or 2m, 2m for some
m. It would then follow from [9, Theorem 11] that A=7,, a contradiction.
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